相关快讯
更多
6小时前
BlockBeats 消息,11 月 30 日,OpenSea 已集成 BNB Chain。
7小时前
BlockBeats 消息,11 月 30 日,据彭博社报道,Web3 可穿戴科技初创公司 Spatial LABS 已完成 400 万美元 pre-seed 轮融资,Jay-Z 旗下 Marcy Venture 参投。据悉,该公司正在募集 A 轮融资。 Spatial LABS 基于 Polygon 区块链研发元宇宙可穿戴设备,并推出了将服装、可穿戴物品和其他实物融合在一起的元宇宙项目「LNQ」,后续将探索音乐、艺术和零售等领域。
7小时前
BlockBeats 消息,11 月 30 日,据 CryptoPresales .com 数据显示,今年前五大加密亿万富翁已共计损失约 1127 亿美元。 其中,Binance 创始人 CZ 一年前净资产约为 965 亿美元,目前净资产为 146 亿美元,损失超 820 亿美元,超过马克•扎克伯格和比尔•盖茨财富缩水量的总和。Meta 首席执行官马克•扎克伯格的财富今年暴跌 560 亿美元,而比尔•盖茨则损失了约 230 亿美元。 FTX 联合创始人 SBF 和 Gary Wang 的财富缩水近 250 亿美元。FTX 暴雷事件发生后短短三周,SBF 损失超 230 亿美元,当前净资产仅不到 10 亿美元。Gary Wang 则损失了 17 亿美元,根据福布斯数据,截至本周,他的净资产为 42 亿美元,低于 59 亿美元的峰值。 Coinbase 首席执行官 Brian Armstrong 的财富今年已缩水 47 亿美元。Ripple 联合创始人 Chris Larsen 的财富今年已缩水 13 亿美元。
7小时前
BlockBeats 消息,11 月 30 日,据 InvestingCube 报道,印度 Web3 游戏初创公司 Glip 完成 250 万美元 pre-A 轮融资,Hashed Emergent 领投,Beenext 和 Prime Venture Partners 参投。 据悉,截至目前,Glip 融资总金额已达 600 万美元。Glip 提供了一个拥有超过 200 万活跃用户的直播平台,旨在将传统游戏玩家带入 Web3 游戏领域,比如 Axie Infinity、KOF Arena 等,该公司计划利用新资金加速新产品功能开发并拓展全球市场、扩大社区规模。
Curve去中心化Stablecoin官方白皮书(中英文参照版本)
Curve 的稳定币设计机制希望能解决为制造稳定币和借贷目的而进行清算的风险性。
原文标题:《Curve 稳定币设计白皮书 中英文参照版本》
原文作者:JamesX,iZUMi Research


Curve 稳定币设计白皮书的中英文参照版本,加入一些辅助理解的中文注释,也修正了一些原版的拼写错误,供大家参考学习。


Overview


The design of the stablecoin has few concepts: lending-liquidating amm algorithm (LLAMMA), PegKeeper, Monetary Policy are the most important ones. But the main idea is in LLAMMA: replacing liquidations with a special-purpose AMM.


这个稳定币的设计中有几个概念是最重要的:借贷-清算 AMM 算法(LLAMMA),PegKeeper(稳定保持机制),货币政策。但主要的设计点是在 LLAMMA:用一个特殊用途的 AMM 代替传统超额抵押借贷的清算流程。


Figure 2: Dependence of the loss on the price shift relative to the liquidation threshold. Time window for the observation is 3 days 图 2:损失对相对于清算阈值的价格变动的依赖性。观察的时间窗口为 3 天


In this design, if someone borrows against collateral, even at liquidation threshold, and the price of collateral dips and bounces - no significant loss happen. For example, according to simulations using historic data for ETH/USD since Sep 2017, if one leaves the CDP unattended for 3 days and during this time the price drop of 10% below the liquidation threshold happened - only 1% of collateral gets lost.


在这种设计中,如果有人用抵押品借款,即使是在清算阈值,抵押品的价格下跌后反弹--也不会发生明显的损失。例如,根据自 2017 年 9 月以来使用 ETH/USD 的历史数据进行的模拟,如果放着 CDP 无人看管 3 天,在此期间,价格下跌至低于清算价格 10% 的情况发生的话,也只有 1% 的抵押品被损失。


AMM for continuous liquidation/deliquidation (LLAMMA) 持续清算/无需清算的 AMM(LLAMMA)


The core idea of the stablecoin design is Lending-Liquidating AMM Algorithm. The idea is that it converts between collateral (for example, ETH) and the stablecoin (let』s call it USD here). If the price of collateral is high - a user has deposits all in ETH, but as it goes lower, it converts to USD. This is very different from traditional AMM designs where one has USD on top and ETH on the bottom instead.


稳定币设计的核心思想是 Lending-Liquidating AMM 算法。这个想法是,它在抵押品(例如 ETH)和稳定币(这里姑且称之为 USD)之间进行转换。如果抵押品的价格很高--用户的存款都是 ETH,但当价格降低时,它就会转换为 USD 稳定币。这与传统的 AMM 设计有很大不同,传统的 AMM 设计是将 USD 稳定币放在上面(AMM 曲线上半截),ETH 放在下面(AMM 曲线下半截)。


The below description doesn』t serve as fully self-consistent rigorous proofs. A lot of that (especially the invariant) are obtained from dimensional considerations. More research might be required to have a full mathematical description, however the below is believed to be enough to implement in practice.


下面的描述并不能作为一个完全自洽的严谨证明。很多东西(尤其是不变量)都是从各种维度考虑得到的。要有一个完整的数学描述,可能需要更多的研究,然而下面的描述被认为足以支持在智能合约中实施。


This is only possible with an external price oracle. In a nutshell, if one makes a typical AMM (for example with a bonding curve being a piece of hyperbola) and ramps its「center price」from (for example) down to up, the tokens will adiabatically convert from (for example) USD to ETH while proving liquidity in both ways on the way (Fig. 3). It is somewhat similar to avoided crossing (also called Landau-Zener transition) in quantum physics (though only as an idea: mathematical description of the process could be very different). The range where the liquidity is concentrated is called band here, at the constant po band has liquidity from pcd to pcu. We seek for pcd(po) and pcu(po) being functions of po only, functions being more steep than linear and, hence, growing faster than po(Fig. 4). In addition, let』s defifine prices pand p being prices where p(po) = po, and p(po) = po, defining ends of bands in adiabatic limit (e.g. p = po).


这只有通过外部预言机喂价才能实现。简而言之,如果一个人做了一个典型的 AMM(例如,粘合曲线是一块双曲线),并将其「中心价格」从(例如)下降到上升,Token 将从(例如)USD「绝热」地转换为 ETH,同时在过程中提供两种方式的流动性(图 3)。这有点类似于量子物理学中的「回避交叉」(也称为 Landau-Zener 跃迁)(虽然只是一个概念:对该过程的数学描述可能非常不同)。


流动性集中的范围在这里被称为「波段」(Band),在恒定的 po 波段有从 pcd 到 pcu 的流动性。我们寻求 pcd(po) 和 pcu(po) 只作为 po 的函数,函数比线性更陡峭,因此,增长速度比 po 快(图 4)。此外,让我们把价格 p 和 p 定义为 p(po)=po 和 p(po)=po 的价格,定义为绝热极限中的波段两端(例如 p=po)。


Figure 3: Behavior of an「AMM with an external price source」. External price pcenter determines a price around which liquidity is formed. AMM supports liquidity concentrated from prices pcd to pcu, pcd < pcenter < pcu. When current price p is out of range between pcd and pcu, AMM is either fully in stablecoin (when at pcu) or fully in collateral (when at pcd). When pcd p pcu, AMM price is equal to the current price p.


  

Figure 4: AMM which we search for. We seek to construct an AMM where pcd and pcu are such functions of po that when po grows, they grow even faster. In this case, this AMM will be all in ETH when ETH is expensive, and all in USD when ETH is cheap.


We start from a number of bands where, similarly to Uniswap3, hyperbolic shape of the bonding curve is preserved by adding virtual balances. Let say, the amount of USD is x, and the amount of ETH is y, therefore the「amplifified」constant-product invariant would be:


我们从一些波段开始,与 Uniswap3 类似,通过增加「虚拟余额」,保留了粘合曲线的双曲形状。比方说,USD 的数量是 x,ETH 的数量是 y,因此「增强的」常数-产品不变性将是:


We also can denote x0 x  +  f and y0 y + g so that the invariant can be written as a familiar I =  x0 y0. However, f and g do not stay constant: they change with the external price oracle (and so does the invariant I, so it is only the invariant while the oracle price po is unchanged). At a given po, f and g are constant across the band. As mentioned before, we denote p as the top price of the band and pas the bottom price of the band. We defifine A (a measure of concentration of liquidity) in such a way that:


我们也可以表示 x0x+f 和 y0y+g,这样不变式就可以写成熟悉的 I=x0 y0。然而,f 和 g 并不是保持不变的:它们随着外部预言机价格的变化而变化(不变量 I 也是如此,所以它只是在预言机价格 po 不变时的不变量)。在给定的 po 下,f 和 g 在整个波段内是不变的。如前所述,我们把 p 表示为波段的顶部价格,p 表示为波段的底部价格。我们对 A(衡量流动性集中度的指标)的定义是这样的:


The property we are looking for is such that higher price po should lead to even higher price at the same balances, so that the current market price (which will, on average, follow po) is lower than that, and the band will trade towards being all in ETH (and the opposite is also true for the other direction). It is possible to find many ways to satisfy that but we need one:


我们正在寻找的属性是这样的:更高的价格 po 应该导致在相同的余额下更高的价格,因此,当前的市场价格(平均来说,将跟随 po)低于这个价格,并且波段将朝着全部为 ETH 的方向交易(而另一个方向也是如此)。可以找到很多方法来满足,但我们需要这样一个:


where y0 is a p0-dependent measure of deposits in the current band, denominated in ETH, defifined in such a way that when current price p, p and po are equal to each other, then y = y0 and x = 0 (see the point at po = p on Fig. 4). Then if we substitute y at that moment:


其中 y0 是一个与 p0 相关的衡量当前波段存款的指标,以 ETH 为单位,其定义是:当当前价格 p、p 和 po 相互相等时,则 y=y0,x=0(见图 4 上 po=p 的点)。那么,如果我们把那一刻的 y 替换掉:


Price is equal to dx0 /dy0 which then for a constant-product invariant is:


价格等于 dx0 /dy0,那么对于一个恒定的产品不变量来说,就是:


One can substitute situations where po = p or po = p with x = 0 or y = 0 correspndingly to verify that the above formulas are self-consistent.


我们可以用 x=0 或 y=0 来代替 po=p 或 po=p 的情况,以验证上述公式是自洽的。


Typically for a band, we know p and, hence, p, po, constant A, and also x and y (current deposits in the band). To calculate everything, we need to find yo. It can be found by solving the quadratic equation for the invariant:


通常对于一个波段,我们知道 p,因此也知道 p、po、常数 A,还有 x 和 y(波段中的当前存款)。为了计算剩下的一切,我们需要找到 yo。它可以通过解决不变量的二次方程来找到:


which turns into the quadratic equation against yo:


这就变成了针对 yo 的二次方程:


In the smart contract, we solve this quadratic equation in get_y0 function.


在智能合约中,我们在 get_y0 函数中解决这个二次方程。


While oracle price po stays constant, the AMM works in a normal way, e.g. sells ETH when going up / buys ETH when going down. By simply substituting x = 0 for the「current down」price pcd or y = 0 for the「current up」price pcu values into the equation of the invariant respectively, it is possible to show that AMM prices at the current value of po and the current value of p are:


在预言机价格 po 保持不变的情况下,AMM 以正常的方式工作,例如,上涨时卖出 ETH/下跌时买入 ETH。通过简单地将 x=0 替换为「当前下跌」的价格 pcd 或 y=0 替换为 "当前上涨 "的价格 pcu 值分别代入不变量方程,就可以说明在 po 的当前值和 p 的当前值下的 AMM 价格是:


Another practically important question is: if price changes up or down so slowly that the oracle price po is fully capable to follow it adiabatically, what amount y of ETH (if the price goes up) or x of USD (if the price goes down) will the band end up with, given current values x and y and that we start also at p = po. While it』s not an immediately trivial mathematical problem to solve, numeric computations showed a pretty simple answer:


另一个重要的实际问题是:如果价格的变化如此缓慢,以至于预言机价格 po 完全能够」绝热地」(在一个波段内)跟随它,那么在给定当前值 x 和 y,并且我们也从 p=po 开始的情况下,这个波段最终会得到多少 y 的 ETH(如果价格上涨)或 x 的 USD(如果价格下跌)。虽然这不是一个立即可以解决的数学问题,但数字计算显示了一个相当简单的答案:


We will use these results when evaluating safety of the loan as well as the potential losses of the AMM.


在评估借贷的安全性以及 AMM 的潜在损失时,我们将使用这些结果。


Now we have a description of one band. We split all the price space into bands which touch each other with prices p and p so that if we set a base price pbase and have a band number n:


现在我们有了对一个波段的描述。我们把所有的价格空间分成若干波段,这些波段的价格 p 和 p 相互接触,因此,如果我们设定一个基础价格 pbase,并有一个波段号 n:


It is possible to prove that the solution of Eq. 7 and Eq. 5 for any band gives:


对于任何一个波段,可以证明公式 7 和公式 5 的解都可以得到:


which shows that there are no gaps between the bands.


这表明波段之间没有空隙。


Trades occur while preserving the invariant from Eq. 1, however the current price inside the AMM shifts when the price po: it goes up when po goes down and vice versa cubically, as can be seen from Eq. 8.


交易发生的同时保留了公式 1 的不变性,然而,当价格为 po 时,AMM 内部的当前价格会发生变化:当 po 下降时,它就会上升,反之亦然(立方系数),从公式 8 可以看出。


LLAMMA vs Stablecoin


Stablecoin is a CDP where one borrows stablecoin against a volatile collateral (cryptocurrency, for example, against ETH). The collateral is loaded into LLAMMA in such a price range (such bands) that if price of collateral goes down relatively slowly, the ETH gets converted into enough stablecoin to cover closing the CDP (which can happen via a self-liquidation, or via an external liquidation if the coverage is too close to dangerous limits, or not close at all while waiting for the price bounce).


稳定币是一种 CDP,人们以不稳定的抵押品(加密货币,例如 ETH)来借入稳定币。抵押品被加载到 LLAMMA 的价格范围内(这样的波段),如果抵押品的价格下降相对缓慢,ETH 被转换成足够的稳定币来覆盖关闭 CDP(这可以通过自我清算发生,或者通过外部清算,如果抵押率太接近危险的限制,或者根本不关闭,同时等待价格反弹)。


When a user deposits collateral and borrows a stablecoin, the LLAMMA smart contract calculates the bands where to locate the collateral.  When the price of the collateral changes, it starts getting converted to the stablecoin. When the system is「underwater」, user already has enough USD to cover the loan. The amount of stablecoins which can be obtained can be calculated using a public get_x_down method. If it gives values too close to the liquidation thresholds - an external liquidator can be involved (typically shouldn』t happen within a few days or even weeks after the collateral price went down and sideways, or even will not happen ever if collateral price never goes up or goes back up relatively quickly). A health method returns a ratio of get_x_down to debt plus the value increase in collateral when the price is well above「liquidation」.


当用户存入抵押品并借入一个稳定币时,LLAMMA 智能合约会计算出抵押品所在的波段。当抵押品的价格变化时,它开始被转换为稳定币。当系统处于「水下」时,用户已经有足够的 USD 来支付贷款。可以获得的稳定币数量可以通过一个公共的 get_x_down 方法来计算。如果它给出的数值过于接近清算阈值--外部清算人可以参与进来(通常不应该在抵押品价格下跌和横盘后的几天甚至几周内发生,甚至如果抵押品价格从未上涨或相对较快地回升,则永远不会发生)。当价格远高于 "清算 "时,一个健康的方法会返回 get_x_down 与债务的比率,再加上抵押品的价值增加。


When a stablecoin charges interest, this should be reflected in the AMM, too. This is done by adjusting all the grid of prices. So, when a stablecoin charges interest rate r, all the grid of prices in the AMM shifts upwards with the same rate r which is done via a base_price multiplier. So, the multiplier goes up over time as long as the charged rate is positive.


当一个稳定币收取利息时,这应该反映在 AMM 中。也要反映出来。这是通过调整价格的所有网格来实现的。因此,当一个稳定币 收取利率 r 时,AMM 中的所有价格格都会向上移动,与 相同的利率 r,这是通过一个基础价格乘数完成的。所以,只要收取的利率是正的, 乘数会随着时间的推移而上升。


When we calculate get_x_down or get_y_up, we are first looking for the amounts of stablecoin and collateral x and y if current price moves to the current price po. Then we look at how much stablecoin or collateral we get if po adiabatically changes to either the lowest price of the lowest band, or the highest price of the highest band respectively. This way, we can get a measure of how much stablecoin we will which is not dependent on the current instantaneous price, which is important for sandwich attack resistance.


当我们计算 get_x_down 或 get_y_up 时,我们首先要找的是如果当前价格移动到当前价格 po 的稳定币和抵押品 x 和 y 的数量。然后我们看一下,如果 po 绝热地变化到最低区间的最低价格,或最高区间的最高价格,我们分别得到多少稳定币或抵押品。这样,我们就可以得到一个衡量我们将获得多少稳定币的标准,它不依赖于当前的瞬时价格,这对夹层攻击的阻力很重要。


It is important to point out that the LLAMMA uses po defined as ETH/USD price as a price source, and our stablecoin could be traded under the peg (ps < 1) or over peg (ps > 1). If ps < 1, then price in the LLAMMA is p > po.


需要指出的是,LLAMMA 使用定义为 ETH/USD 价格的 po 作为价格来源,我们的稳定币可以在挂钩之下(ps<1)或超过挂钩(ps>1)进行交易。如果 ps<1,那么 LLAMMA 中的价格就是 p>po。


In adiabatic approximation, p = po/ps, and all the collateral<>stablecoin conversion would happen at a higher oracle price / as if oracle price was lower and equal to:


在绝热近似中,p=po/ps,所有抵押品<>稳定币的转换将发生在较高的预言机价格上/就像预言机价格较低且等于:


At this price, the amount of stablecoins obtained at conversion is higher by factor of 1/ps (if ps < 1) .


在这个价格下,转换时获得的稳定币的数量要高出 1/ps 的系数(如果 ps<1)。


It is less desirable to have ps > 1 for prolonged times, and for that we will use the stabilizer (see next)

在长时间内,ps>1 是不太理想的,为此我们将使用稳定器(见下一章节)。


Automatic Stabilizer and Monetary Policy 自动稳定器和货币政策


When ps > 1 (for example, because of the increased demand for stablecoin), there is peg-keeping reserve formed by an asymmetric deposit into a stableswap Curve pool between the stablecoin and a redeemable reference coin or LP token. Once ps > 1, the PegKeeper contract is allowed to mint uncollateralized stablecoin and (only!) deposit it to the stableswap pool single-sided in such a way that the final price after this is still no less than 1. When ps < 1, the PegKeeper is allowed to withdraw (asymmetrically) and burn the stablecoin.


当 ps>1 时(例如,由于对稳定币的需求增加),就会有锚定的储备,由稳定币和可赎回的参考币或 LP Token 之间的不对称存款到 stableswap Curve 池形成。一旦 ps>1,PegKeeper 合约被允许铸造无抵押的稳定币,并且只将其单边存入 stableswap 池,这样做之后的最终价格仍然不低于 1。当 ps<1 时,PegKeeper 被允许提取(不对称地)并烧毁稳定币。


These actions cause price ps to quickly depreciate when it』s higher than 1 and appreciate if lower than 1 because asymmetric deposits and withdrawals change the price. Even though the mint is uncollateralized, the stablecoin appears to be implicitly collateralized by liquidity in the stablecoin pool. The whole mint/burn cycle appears, at the end, to be profitable while providing stability.


这些行为导致价格 ps 高于 1 时迅速贬值,低于 1 时升值,因为不对称的存款和提款改变了价格。即使这部分「铸币」是没有抵押的,但稳定币似乎是由稳定币池中的流动性隐性抵押支持的。整个铸币/燃烧周期在最后似乎是有利可图的,同时提供了稳定性。


Let』s denote the amount of stablecoin minted to the stabilizer (debt) as dst and the function which calculates necessary amount of redeemable USD to buy the stablecoin in a stableswap AMM get_dx as fdx(). Then, in order to keep reserves not very large, we use the「slow」mechanism of stabilization via varying the borrow r:


让我们把铸造给稳定器(债务)的稳定币数量表示为 dst,把计算在 stableswap AMM get_dx 中购买稳定币所需的可赎回 USD 数量的函数表示为 fdx()。然后,为了保持「储备」不是非常大,我们通过改变借款 r 来使用「缓慢」的稳定机制。


where h is the change in ps at which the rate r changes by factor of 2 (higher ps leads to lower r). The amount of stabilizer debt dst will equilibrate at different value depending on the rate at ps = 1 r0. Therefore, we can (instead of setting manually) be reducing r0 while dst/supply is larger than some target number (for example, 5%) (thereby incentivizing borrowers to borrow-and-dump the stablecoin, decreasing its price and forcing the system to burn the dst) or increasing if it』s lower (thereby incentivizing borrowers to return loans and pushing ps up, forcing the system to increase the debt dst and the stabilizer deposits).


其中 h 是 ps 的变化,速率 r 的变化为 2 倍(ps 越高,r 越低)。稳定器债务 dst 的数量将根据 ps=1 r0 的速率在不同的值上平衡。因此,我们可以(而不是手动设置)在 dst/supply 大于某个目标数字(例如 5%)时减少 r0(从而激励借款人借入并抛出稳定币,降低其价格并迫使系统燃烧 dst),或者在它较低时增加(从而激励借款人归还贷款并推动 ps 上升,迫使系统增加债务 dst 和稳定器存款)。


Conclusion / 总结


The presented mechanisms can, hopefully, solve the riskiness of liquidations for stablecoin-making and borrowing purposes. In addition, stabilizer and automatic monetary policy mechanisms can help with peg-keeping without the need of keeping overly big PSMs.


希望所提出的机制能够解决为制造稳定币和借贷目的而进行清算的风险性。此外,稳定器和自动货币政策机制可以帮助保持价格锚定,而不需要保持过大的 PSM(Peg Stability Module 锚定稳定性模块)。


原文链接


律动 BlockBeats 提醒,根据银保监会等五部门于 2018 年 8 月发布《关于防范以「虚拟货币」「区块链」名义进行非法集资的风险提示》的文件,请广大公众理性看待区块链,不要盲目相信天花乱坠的承诺,树立正确的货币观念和投资理念,切实提高风险意识;对发现的违法犯罪线索,可积极向有关部门举报反映。
精选观点
Vic TALK:
Curve要做链上稳定币的最大发行商,会蚕食掉现有的所有链上稳定币的业务份额。 Curve 团队设计了一套几乎结合和改进了所有「被公认为 defi 中最好解决的方案」的稳定币发行机制,并且这个发行机制还和自己的最大的业务---稳定币交易市场连接到了一起。 这可能是去中心化垄断的开端…… (来源:Twitter)
稳定币
栏目
稳定币是中心化资产抵押发行代币